How to Take Advantage of Artificial Intelligence in Your Contact Center

Charles Watson Workforce Management Sep 20, 2018 15 min read

Most companies are always on the lookout for the next ‘Game changer’ for their contact center.  When you talk to experts, you’ll hear a lot of buzzwords these days, such as ‘Omnichannel’, ‘Net Promoter Score (NPS)’, ‘Chatbots’, and ‘Artificial Intelligence (AI)’.  It can be challenging to sift through all of these terms to see what actually matters to you. 

In this blogpost, I want to demystify a few things about Artificial Intelligence (AI) in the contact center and share how AI is used to drive better results and to boost efficiency and customer satisfaction. I’ll focus on AI in workforce management technology, but will also talk about other ways AI is used in contact centers, because there are actually several interesting applications.


 

What is Artificial Intelligence?

The term Artificial Intelligence was first introduced by John McCarthy during the 1956 Dartmouth Artificial Intelligence (AI) conference where leading researchers of the time discussed about advanced research topics such as complexity theory, language simulation, neural nets and learning machines.

Today, AI is seen as a sub-field of computer science and is defined as “the theory and development of computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages” (Oxford Dictionary).

In fact, AI can be regarded as a substitute for human work as it is based on the premise that machines imitate human intelligence. The objective of AI is to have processes in place that improve automatically without you having to intervene for each adjustment. AI technology generally uses machine learning to observe patterns and the impact of various inputs to continuously improve an output. As the inputs and the conditions change, the system adjusts itself.

 

Impact of AI on Customer Service

For customer-interfacing, chatbot technologies are powered by AI to handle support requests. A chatbot allows customers to get answers immediately to relatively simple or common questions. The more the chatbot gets used and the more input it gets on whether the answers were helpful or not, the better it calibrates future responses. So continual input and feedback drives continuous improvement without any manual intervention and human support from the contact center.

This of course changes the role of the customer service agent. As more customers get self-service by chatbots, simple and quick transactional calls no longer reach the contact center. Instead, the calls that go to your agents become more complex, longer, and may focus more on managing relationships with your customers.

As you plan for handle times you will likely see an increase in the average handle time. However, if the technology is effective and your customers are getting their issues resolved without talking to someone, your total handled minutes will go down. When you implement AI or self-service technologies for customers, be sure to see if the number of inbound calls goes down. If you only measure the effectiveness by handle time, you’re not getting the whole picture. This is often missed by organizations as they roll out and integrate self-service options in their contact center in the quest to provide omnichannel customer service.

 

Workforce Management and AI

Workforce management systems can benefit and leverage Artificial Intelligence as well. SaaS and cloud-based WFM tools, like injixo, make use of AI technology such as machine learning components to remove a lot of the manual and repetitive work from forecasting and scheduling while improving the overall effectiveness of the system. This can provide significant efficiency gains and cost reductions through more efficient operations and subsequently consistent service levels as your staffing better aligns to the demand at the interval level. Less human intervention is necessary and you need fewer people to maintain the models. I generally use this advantage to have team members in workforce management focus their time on more advanced, analytical work to add value to both the company and the customers.

 

How AI improves WFM

Several WFM tools use AI in their forecasting and scheduling modules. injixo is an industry leader in cloud-based WFM technology and leverages AI to benefit you. So I asked them to help explain how AI is used in their workforce management system. This is the answer I got:

„The new injixo forecast basically consists of two models: The first one models the daily time series, while the second one maps the daily volumes to intraday volumes. The daily model consists of two components: The first component accounts for seasonalities like weekly, monthly, yearly patterns or long lasting trends. The second component  models short term dependencies within the time series (e.g. dependence of recent days on next day).

Within our fitting algorithms we use techniques from machine learning, like regularization, to avoid that the model fits too closely to the historical data (overfitting), which results in an inferior accuracy on data, which the model has not seen before.

Generally, we use self-learning algorithms (machine learning) that are specifically tailored to the contact center domain. Based on 20 years of experience and knowledge in the field with our mother company InVision, we have gathered a lot of insights and can thus provide very accurate and specific forecasts for our customers. The new injixo forecast also considers fluctuations and events and recognizes patterns while learning to be even more accurate over time. We use a pool of different models and select the best one for each workload (set of queues) and contact center customer to ensure highly accurate forecasts that are tailored to their business.

Of course, we also make use of neural networks to guarantee a customer specific modeling and continuous improvement of their forecast calculations which also allows us to minimize error margins. What’s special about injixo Forecast is that it is fully automatic. There is minimal manual effort needed - from ACD integration to the first forecast. So there are as little steps for the customer as possible to get the best possible forecast for multichannel contact volumes for multiple queues (which can be consolidated in workloads).

What’s also nice is that customers can always build new test scenarios on-the-fly in injixo Forecast with just a minimum amount of data without touching or changing existing original data imported from the ACD. Altogether, the injixo forecast allows up to 100% time savings in the entire forecasting procedure and customers don’t even need expertise in the field. They can just run it automatically.

We intend to further improve the forecast as we go along to potentially leverage big data from external sources such as weather, traffic and event data and thereby exploit this collective intelligence to make the forecast even faster, better and smarter.

 


jixo_forecast

Forecasting doesn't need to be hard

or time-consuming!

Discover the brand-new injixo ForecastFully-automatic and always up-to-date.

Automated contact center forecasting for calls, chat, email and more. 

 

Learn more

 

To learn more about forecasting in general - check out my recent 3 part blogpost series on Contact Center Forecasting Fundamentals.

 

Taking Advantage of AI in Your Contact Center

As you can see, leveraging the power of artificial intelligence in workforce management can be a huge asset for your business. I’ve used it successfully in a few different industries. However, if you also want to take advantage of it, you should consider a few things.

First, machine learning and AI adjusts based on the information that comes in. So if you have external events in your data that impacted workloads in the past, you need to consider if you exclude those events before an AI tool uses that data to create a forecast. This might be necessary if these are one-time events. For example, when I was in the travel industry, there was a hurricane in early September 3 years in a row. However, that doesn’t mean there will be one this year. But the technology sees the pattern and adjusts seasonality accordingly. Now, because we’ve had that incident the last 3 years, when I’m doing long-term planning, it’s not a bad assumption to plan for it to happen again. But as you get closer to the date, you will be able to clearly see where there is any potential for a hurricane. If the weather is clear and expected to stay clear you need to manually override this.

You’ll see examples of this in other areas as well. If your business runs a marketing campaign or has an ad play in the media, this may drive an immediate response. This will impact your overall volume, your day of week distribution and your interval arrival pattern. As your data comes in, normalize it by removing those events that you don’t expect to be recurring. After the base forecast has been created leveraging the power of AI, these events can be overlaid again if necessary.

As you implement workforce management technology with artificial intelligence, make note of all of the anomalies that can impact your forecast. And don’t be afraid to make manual adjustments. Over time, you’ll have the best of both worlds - technology that continues to learn from actuals, and the right level of human interaction to make sure you get the best possible forecast. You’ll continue to reduce the amount of time you spend engaging with the technology and reinvest that time into driving more value.

The worst thing you can do is to expect AI to take care of everything. Like any tool, it assists you and reduces the heavy lifting. But you want to always understand how it’s working and where it’s making improvements. The best thing you can do to maximize the quality of an AI-driven forecast is to ensure the data used for the forecast is clean. It’s like that old saying 'Garbage in, Garbage out'.

 

Other Uses of AI in Customer Service

Here is a brief overview of some other use cases and application options of AI technology in the contact center landscape compiled by Call Centre Helper and a dedicated panel of experts. For more detailed explanation, check out their article here.

1. Replacement / complementation of IVR (Interactive Voice Response) processes

AI makes use of more sophisticated mechanisms based on Natural Language Processing and Machine Learning techniques to better understand statements and to provide a broader set of choices that are more accurately tailored to the user or customer.

2. Enhanced analytics and customer intelligence based on chatbot interaction data

With AI technology incorporated in chatbots, more customer interaction data can be captured and analyzed accordingly to improve customer satisfaction and overall contact center processes.

3. Optimized self-service experience through virtual assistants

Virtual assistants provide great contribution to self-service options in helping customers / users to navigate websites, and find the information they are looking for without involving human support.

4. Robotic process automation to benefit from big data across platforms & systems

Robotic process automation (RPA) attempts to consolidate, analyse and share data across channels and platforms to facilitate access and personalization of service delivery.

5. Predictive analytics in customer service

With AI powered analytics, customer behavior can be identified and predicted at a faster pace which eventually leads to better decision making in both planning and operations.

6. Cognitive systems accelerate automation and reduce human intervention

With the help of AI powered technologies, former rules-based system will become cognitive systems allowing for automation and increased optimization potential while reducing the need for human intervention in activities such as forecasting and Skills-Based Routing.

7.  Better and enhanced Self-Service capabilities

AI advances self-service capabilities in the every-day business of a contact center thus easing up time and effort for planners and agents to focus on more sophisticated tasks to create a better customer experience.

8. Customer interaction via robots

Robots such as chatbots empower customers by reducing complexity and allowing for quick self-service solutions that do not require human intervention - thereby also reducing costs for contact centers by cutting off repetitive, time consuming tasks.

 

Time to Take Action

These are just a few of many application examples for AI technology and there is certainly more to come. Yet, many contact centers are still in the fledgling stage to adopt AI components to increase operational efficiency and streamline customer service. It is an exciting time to watch out for new trends and observe recent technological developments to stay on top of the competition and continue to provide superior customer experience.

Do your research on how Artificial Intelligence can help your workforce management team. In addition to reaching out to workforce management technology vendors, you can also talk with consultants to discuss what options exist in the marketplace and what may best suit your contact center.

 

 FREE EBOOK

The Must-Have Guide to Accurate Forecasting in Your Contact Center

injixo-ebook-the-must-have-guide-to-accurate-call-center-forecasting-cover

>> Download now <<